Optimal Linear Combinations of Neural Networks: An Overview
نویسنده
چکیده
| Neural networks based model-ing often involves trying multiple networks with diierent architectures and/or training parameters in order to achieve acceptable model accuracy. Typically, one of the trained NNs is chosen as best, while the rest are discarded. Hashem and Schmeiser 1] propose using optimal linear combinations of a number of trained neural networks instead of using a single best network. In this paper, we discuss and extend the idea of optimal linear combinations of neural networks. Optimal linear combinations are constructed by forming weighted sums of the corresponding outputs of the networks. The combination-weights are selected to minimize the mean squared error with respect to the distribution of random inputs. Combining the trained networks may help integrate the knowledge acquired by the component networks and thus improve model accuracy. We investigate some issues concerning the estimation of the optimal combination-weights and the role of the optimal linear combination in improving model accuracy for both well-trained and poorly trained component networks. Experimental results based on simulated data are included. For our examples, the model accuracy resulting from using estimated optimal linear combinations is better than that of the best trained network and that of the simple averaging of the outputs of the component networks.
منابع مشابه
The Impact of Forecasting Methods Combination for Reducing Bullwhip Effect in a Four-level Supply Chain under Variable Demand
Bullwhip effect in a supply chain, makes inefficiencies such as excess inventory and overdue orders during the chain. These problems can be reduced by appropriate predictions. Forecasting must be done in all levels of a supply chain. This research addresses the problem of optimal combination of forecasting to reduce the bullwhip effect in a four-level supply chain when demand is variable. For t...
متن کاملOptimal Linear Combinations of Neural Networks
Neural network-based modeling often involves trying multiple networks with different architectures and training parameters in order to achieve acceptable model accuracy. Typically, one of the trained networks is chosen as best, while the rest are discarded. [Hashem and Schmeiser (1995)] proposed using optimal linear combinations of a number of trained neural networks instead of using a single b...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملApproximating a Function and its Derivatives Using MSE-Optimal Linear Combinations of Trained Feedforward Neural Networks
In this paper, we show that using MSE-optimal linear combinations of a set of trained feedforward networks may signiicantly improve the accuracy of approximating a function and its rst and second order derivatives. Our results are compared to the accuracies achieved by the single best network and by the simple averaging of the outputs of the trained networks.
متن کاملOptimal Linear Combinations of Neural Networks 1
Neural network (NN)-based modeling often involves trying multiple networks with diierent architectures and training parameters in order to achieve acceptable model accuracy. Typically, one of the trained NNs is chosen as best, while the rest are discarded. Hashem and Schmeiser 25] proposed using optimal linear combinations of a number of trained neural networks instead of using a single best ne...
متن کامل